Abstract

In this paper, we developed a three-dimensional percolation model to investigate the effects of the concentration and morphology of CNTs (carbon nanotubes) on the electrical conductivity of the nanocomposites. In the model, we judged the connections between CNTs by range search algorithm based on KD-Tree structure. At the same time, DIJKSTRA-Melissa algorithm was applied to efficiently find all the conductive paths instead of finding conductive network in traditional methods. From the simulation results, CNTs with higher aspect ratio were easier to form the conductive network. In a certain range of CNT’s concentration, the relationship between the conductivity of the conductive network and the carbon nanotubes was basically consistent with the classical percolation theory. To verify our simulation model, the morphological, electrical properties of Carbon nanotubes (CNTs)/poly(dimethyl siloxane) (PDMS) nanocomposites with different aspect ratio (AR) of MWNTs were systematically studied. In conclusion, these unique advantageous properties could be exploited to suggest potential applications of artificial electronic skin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.