Abstract

Author SummaryBecause bacterial cells are so small, it is challenging to image the spatial organization of proteins inside them. All the proteins that orchestrate cell division in these organisms localize to the division site prior to division, but it has not so far been possible to obtain a clear highresolution three-dimensional picture of the dynamics of their localization. In this study we use a new type of super resolution microscopy called three-dimensional structured illumination microscopy (3D-SIM) to analyze the localization of proteins involved in cell division in two types of bacteria that have different cell shapes: the rod-shaped Bacillus subtilis and the spherical Staphylococcus aureus. We show that FtsZ, a cytoskeletal protein that serves as a scaffold for the cytokinetic ring, localizes to the division site in a dynamic bead-like pattern, rather than a uniform ring as was previously proposed, in both types of bacteria. Our observations also provide an explanation of how this ring constricts to split a bacterial cell in two and suggests that this spatial organization of division proteins is conserved among bacteria and is crucial for the regulation of this central cellular process.

Highlights

  • Cell division is essential for the propagation of all living species

  • In this study we use a new type of super resolution microscopy called three-dimensional structured illumination microscopy (3D-SIM) to analyze the localization of proteins involved in cell division in two types of bacteria that have different cell shapes: the rod-shaped Bacillus subtilis and the spherical Staphylococcus aureus

  • We show that FtsZ, a cytoskeletal protein that serves as a scaffold for the cytokinetic ring, localizes to the division site in a dynamic bead-like pattern, rather than a uniform ring as was previously proposed, in both types of bacteria

Read more

Summary

Introduction

Cell division is essential for the propagation of all living species. Division in many prokaryotic organisms relies on the polymerization of the protein FtsZ into a ring structure, called the Z ring, at the division site. FtsZ is found in virtually all bacterial species, many species of archaea, and even in higher plants where FtsZ is involved in chloroplast division [1,2]. The ability of FtsZ to assemble into the Z ring marks the beginning of the division process [3]. Following its formation on the inner cell membrane the Z ring acts as a scaffold to recruit the other cell division proteins to this site [4,5]. Several studies have indicated that the Z ring has an additional role in providing the contractile force required to ‘‘pull in’’ the cell envelope during cytokinesis [6,7,8,9]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.