Abstract

Diffuse optical tomography (DOT) aims at recovering three-dimensional images of absorption and scattering parameters inside diffusive body based on small number of transmission measurements at the boundary of the body. This image reconstruction problem is known to be an ill-posed inverse problem, which requires use of prior information for successful reconstruction. We present a shape based method for DOT, where we assume a priori that the unknown body consist of disjoint subdomains with different optical properties. We utilize spherical harmonics expansion to parameterize the reconstruction problem with respect to the subdomain boundaries, and introduce a finite element (FEM) based algorithm that uses a novel 3D mesh subdivision technique to describe the mapping from spherical harmonics coefficients to the 3D absorption and scattering distributions inside a unstructured volumetric FEM mesh. We evaluate the shape based method by reconstructing experimental DOT data, from a cylindrical phantom with one inclusion with high absorption and one with high scattering. The reconstruction was monitored, and we found a 87% reduction in the Hausdorff measure between targets and reconstructed inclusions, 96% success in recovering the location of the centers of the inclusions and 87% success in average in the recovery for the volumes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.