Abstract

Given the increase of nuclear power plants, it has become unavoidable for the pile-supported nuclear-island buildings to be constructed on the coastal deposits potentially influenced by strong earthquakes. The coupling influences of the hysteresis nonlinearity of soil and the soil-pile-structure interaction (SPSI) have not yet been considered comprehensively in the seismic response analysis of the nuclear-island building, although it is a vital issue. On the basis of a newly-developed generalized non-Masing hysteretic constitutive model, a 3D integrated simulation method is proposed to evaluate the seismic responses of the pile-mat-founded nuclear-island building system subjected to multidirectional earthquake motions. This integrated method involves an explicit parallel algorithm framework, comprising the nuclear-island building modeling, the pile-mat foundation modeling, the inhomogeneous soil domain modeling, and the artificial boundary condition. The bedrock records of near-field, moderate-far field and far-field earthquake scenarios are assumed for determining the bedrock motions of the ultimate and operational safety earthquakes. For an actual pile-mat-founded AP1000 nuclear-island building, the simulation results show the complexity and significance of the coupling effect of the site, the tridirectional earthquake shaking, and the secondary nonlinearity of soil. Such a complex coupling effect significantly increases the seismic responses of the pile-mat-founded nuclear-island building. A notable finding is that the scenario earthquakes with abundant long period components may have more destructive potential to the pile-mat-founded nuclear-island buildings than the scenario earthquakes with characteristics of abundant short period components and shorter durations. The results provide insights into the seismic design of the pile-mat-founded nuclear-island buildings, which could guide the design and construction of such similar facilities in the high seismic intensity regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.