Abstract
Computed tomography (CT) is the most sensitive imaging technique for detecting lung nodules, and is now being evaluated as a screening tool for lung cancer in several large samples studies all over the world. In this report, we describe a semiautomatic method for 3-D segmentation of lung nodules in CT images for subsequent volume assessment. The distinguishing features of our algorithm are the following. 1) The user interaction process. It allows the introduction of the knowledge of the expert in a simple and reproducible manner. 2) The adoption of the geodesic distance in a multithreshold image representation. It allows the definition of a fusion--segregation process based on both gray-level similarity and objects shape. The algorithm was validated on low-dose CT scans of small nodule phantoms (mean diameter 5.3--11 mm) and in vivo lung nodules (mean diameter 5--9.8 mm) detected in the Italung-CT screening program for lung cancer. A further test on small lung nodules of Lung Image Database Consortium (LIDC) first data set was also performed. We observed a RMS error less than 6.6% in phantoms, and the correct outlining of the nodule contour was obtained in 82/95 lung nodules of Italung-CT and in 10/12 lung nodules of LIDC first data set. The achieved results support the use of the proposed algorithm for volume measurements of lung nodules examined with low-dose CT scanning technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Information Technology in Biomedicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.