Abstract

To overcome the diffraction barrier, super-resolution microscopy is contrived and has witnessed scientific developments in varying fields, especially in last few decades, such as stochastic optical reconstruction microscopy, stimulated emission depletion microscopy (STED), mirror-enhanced super-resolution microscopy (MEANS), and fluorescence emission difference microscopy (FED). Recently, saturated competition microscopy (SAC) was developed to realize high sub-diffraction resolution in either fluorescent or non-fluorescent imaging. Compared with STED, SAC features non-constraint in fluorescent dye selection. Nevertheless, the lateral resolution is limited in consideration of photobleaching side effects. Also, the axial resolution enhancement of SAC has not been demonstrated. In this study, a method, combining FED, MEANS, and SAC, is presented to improve the three-dimensional (3D) resolution. The numerical study reveals that the lateral resolution is close to 0.085λ and axial resolution can be enhanced to 0.184λ. In addition, the SNR is improved simultaneously. The availability to improve 3D resolution of SAC is believed to be significant for biological imaging in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call