Abstract
The three-dimensional (3-D) shape of microcalcification clusters is an important indicator in early breast cancer detection. In fact, there is a relationship between the cluster topology and the type of lesion (malignant or benign). This paper presents a 3-D reconstruction method for such clusters using two 2-D views acquired during standard mammographic examinations. For this purpose, the mammographic unit was modeled using a camera with virtual optics. This model was used to calibrate the acquisition unit and then to reconstruct the clusters in the 3-D space after microcalcification segmentation and matching. The proposed model is hardware independent since it is suitable for digital mammographic units with different geometries and with various physical acquisition principles. Three-dimensional reconstruction results are presented here to prove the validity of the method. Tests were first performed using a phantom with a well-known geometry. The latter contained X-ray opaque glass balls representing microcalcifications. The positions of these balls were reconstructed with a 16.25-microm mean accuracy. This very high inherent algorithm accuracy is more than enough for a precise 3-D cluster representation. Further validation tests were carried out using a second phantom including a spherical cluster. This phantom was built with materials simulating the behavior of both mammary tissue and microcalcifications toward Xrays. The reconstructed shape was effectively spherical. Finally, reconstructions were carried out for real clusters and their results are also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.