Abstract

The transverse magnetic field (TMF) contacts make the vacuum arcs deviate from the axisymmetric structure, so complete spatiotemporal evolution information of the plasma cannot be obtained by adopting one- or two-dimensional (2D) diagnostic methods. To address the issues, computer tomography was introduced in this paper. First, a multi-angle diagnostic imaging system based on split fiber bundles was proposed, which used a high-speed camera to simultaneously acquire eight angles of the arc image over time. In addition, a tomography algorithm called the maximum likelihood expectation maximum with Split Bregman denoising was proposed to reconstruct the dynamic spatiotemporal characteristics of the arc under complex conditions. Then, the three-dimensional (3D) distribution of Cu i and Cr i particles inside the contact gap was obtained by adopting optical filters. The 3D distribution of the vacuum arc had shown an obvious asymmetrical pattern under the TMF contacts, and there was a ring-like aggregation zone inside the arc, which can cause severe ablation on the anode contacts. According to the reconstructed 3D distribution of Cu i and Cr i, it is found that the metal vapor was mainly concentrated near the electrode surface and showed a clear distribution of non-uniform aggregates, while the concentration of particles in the gap was low. Moreover, on the cathode surface, the cathode spots moved in the form of groups driven by the TMF, while the anode surface was ablated by the electric arc, and the metal vapor existed in the form of bands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call