Abstract

In medical diagnostic imaging, the X-ray CT scanner and the MRI system have been widely used to examine 3D shapes and internal structures of living organisms and bones. However, these apparatuses are generally large and very expensive. Since an appointment is also required before examination, these systems are not suitable for urgent fracture diagnosis in emergency treatment. However, X-ray/fluoroscopy has been widely used as traditional medical diagnosis. Therefore, the realization of the reconstruction of precise 3D shapes of living organisms or bones from a few conventional 2D fluoroscopic images might be very useful in practice, in terms of cost, labor, and radiation exposure. The present paper proposes a method by which to estimate a patient-specific 3D shape of a femur from only two fluoroscopic images using a parametric femoral model. First, we develop a parametric femoral model by the statistical analysis of 3D femoral shapes created from CT images of 56 patients. Then, the position and shape parameters of the parametric model are estimated from two 2D fluoroscopic images using a distance map constructed by the Level Set Method. Experiments using synthesized images, fluoroscopic images of a phantom femur, and in vivo images for hip prosthesis patients are successfully carried out, and it is verified that the proposed system has practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.