Abstract

The SEG/EAGE overthrust model is a synthetic onshore velocity model that was used to generate several large synthetic seismic data sets using acoustic finite‐difference modeling. From this database, several realistic subdata sets were extracted and made available for testing 3D processing methods. For example, classic onshore‐type data‐acquisition geometries are available such as a swath acquisition, which is characterized by a nonuniform distribution of long offsets with azimuth and midpoints.In this paper, we present an application of 2.5D and 3D ray‐Born migration/inversion to several classical data sets from the SEG/EAGE overthrust experiment. The method is formulated as a linearized inversion of the scattered wavefield. The method allows quantitative estimates of short wavelength components of the velocity model.First, we apply a 3D migration/inversion formula formerly developed for marine acquisitions to the swath data set. The migrated sections exhibit significant amplitude artifacts and acquisition footprints, also revealed by the shape of the local spatial resolution filters. From the analysis of these spatial resolution filters, we propose a new formula significantly improving the migrated dip section. We also present 3D migrated results for the strike section and a small 3D target containing a channel.Finally, the applications demonstrate, that the ray+Born migration formula must be adapted to the acquisition geometry to obtain reliable estimates of the true amplitude of the model perturbations. This adaptation is relatively straightforward in the frame of the ray+Born formalism and can be guided by the analysis of the resolution operator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.