Abstract

In biological tissue, an increase in elasticity is often a marker of abnormalities. Techniques such as quasi-static ultrasound elastography have been developed to assess the strain distribution in soft tissues in two dimensions using a quasi-static compression. However, as abnormalities can exhibit very heterogeneous shapes, a three dimensional approach would be necessary to accurately measure their volume and remove operator dependency. Acquisition of volumes at high rates is also critical to performing real-time imaging with a simple freehand compression. In this study, we developed for the first time a 3D quasi-static ultrasound elastography method with plane waves that estimates axial strain distribution in vivo in entire volumes at high volume rate. Acquisitions were performed with a 2D matrix array probe of 2.5 MHz frequency and 256 elements. Plane waves were emitted at a volume rate of 100 volumes/s during a continuous motorized and freehand compression. 3D B-mode volumes and 3D cumulative axial strain volumes were successfully estimated in inclusion phantoms and in ex vivo canine liver before and after a high intensity focused ultrasound ablation. We also demonstrated the in vivo feasibility of the method using freehand compression on the calf muscle of a human volunteer and were able to retrieve 3D axial strain volume at a high volume rate depicting the differences in stiffness of the two muscles which compose the calf muscle. 3D ultrasound quasi-static elastography with plane waves could become an important technique for the imaging of the elasticity in human bodies in three dimensions using simple freehand scanning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call