Abstract

Osteocytes are the major actors in bone mechanobiology. Within bone matrix, they are trapped close together in a submicrometric interconnected network: the lacunocanalicular network (LCN). The interstitial fluid circulating within the LCN transmits the mechanical information to the osteocytes that convert it into a biochemical signal. Understanding the interstitial fluid dynamics is necessary to better understand the bone mechanobiology. Due to the submicrometric dimensions of the LCN, making it difficult to experimentally investigate fluid dynamics, numerical models appear as a relevant tool for such investigation. To develop such models, there is a need for geometrical and morphological data on the human LCN. This study aims at providing morphological data on the human LCN from measurement of 27 human femoral diaphysis bone samples using synchrotron radiation nano-computed tomography with an isotropic voxel size of 100 nm. Except from the canalicular diameter, the canalicular morphological parameters presented a high variability within one sample. Some differences in terms of both lacunar and canalicular morphology were observed between the male and female populations. But it has to be highlighted that all the canaliculi cannot be detected with a voxel size of 100 nm. Hence, in the current study, only a specific population of large canaliculi that could be characterize. Still, to the authors knowledge, this is the first time such a data set was introduced to the community. Further processing will be achieved in order to provide new insight on the LCN permeability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.