Abstract

The development of sustainable and efficient electrochemical processes is crucial for addressing global challenges related to water scarcity. In this study, we present a novel 3D core-shell electrocatalyst, Pt@ZnAl-LDH, supported on low-grade charcoal (LGC), which exhibits exceptional electrocatalytic activity for the degradation and decolorization of dye and the electrocatalytic conversion of glycerol to valuable C3 chemicals. The electrocatalytic degradation of methylene blue dye from water was investigated with a focus on the impact of temperature, pH, and dye concentration. The Pt@ZnAl-LDH/LGC anode demonstrates high selectivity for converting glucose into lactate and other C3 products, achieving an impressive 85% conversion rate at 0.5 V vs. Furthermore, the electrode achieves an exceptionally high level of selectivity for C3 products, reaching 86% at 2.2 V vs, significantly outperforming other electrodes. Theoretical calculations and electrochemical in situ techniques reveal that the incorporation of ZnAl-LDH enhances the adsorption of hydroxyl species, leading to improved glucose oxidation reaction performance. The 3D Pt@ZnAl-LDH/LGC catalyst optimizes glycerol adsorption, preventing the formation of unwanted intermediates and ensuring high activity and selectivity for C3 products. This work presents a novel electrocatalytic compound for the degradation of toxic dyes and the production of valuable C3 products using an inexpensive aqueous glucose oxidation method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.