Abstract

The existing end-to-end optimized 3D action recognition methods often suffer from high computational costs. Observing that different frames and different points in point cloud sequences often have different importance values for the 3D action recognition task, in this work, we propose a fully automatic model compression framework called 3D-Pruning (3DP) for efficient 3D action recognition. After performing model compression by using our 3DP framework, the compressed model can process different frames and different points in each frame by using different computational complexities based on their importance values, in which both the importance value and computational complexity for each frame/point can be automatically learned. Extensive experiments on five benchmark datasets demonstrate the effectiveness of our 3DP framework for model compression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.