Abstract

The hot deformation behavior of extruded AZ80 magnesium alloy was investigated using compression tests in the temperature range of 250–400 °C and strain rate range of 0.001–1.000 s−1. The 3D power dissipation map was developed to evaluate the hot deformation mechanisms and determine the optimal processing parameters. Two domains of dynamic recrystallization were identified from the 3D power dissipation map, with one occurring in the temperature and strain rate range of 250–320 °C and 0.001–0.010 s−1 and the other one occurring in the temperature and strain rate range of 380–400 °C and 0.001–0.003 s−1. In order to delineate the regions of flow instability, Prasad’s instability criterion, Murty’s instability criterion and Gegel’s stability criteria were employed to develop the 3D instability maps. Through microstructural examination, it is found that Prasad’s and Murty’s instability criteria are more effective than Gegel’s stability criteria in predicting the flow instability regions for extruded AZ80 alloy. Further, the 3D processing maps were integrated into finite element simulation and the predictions of the simulation are in good agreement with the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.