Abstract

The equiaxed solidification of eutectic alloys is modelled by a probablistic method. The volume of the specimen is divided into a regular network of cubic cells and the temperature is assumed to be uniform. The temperature of the specimen is calculated in a time-stepping scheme from a simple heat balance and a knowledge of the heat flux leaving the metal. However, unlike the classical deterministic models describing equiaxed solidification, the evolution of the volume fraction of solid associated with the latent heat release is directly obtained from the cells of the network which have already been solidified. The liquid-to-solid transition of the cells is calculated by considering the mechanisms of heterogeneous nucleation and grain growth, but the grain impingement is already accounted for by this probabilistic method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call