Abstract

AbstractControllable and long‐term release remains a great challenge in current drug delivery systems. Benefiting from their efficient drug loading and painless administration, microneedles (MNs) have emerged as a promising platform for transdermal drug delivery, while they often fail to achieve long‐term tissue adhesion and controllable extended drug release. Here, 3D printing of an innovative MN patch is presented with succulent‐inspired responsive microstructures and light‐controllable long‐term release capability. The MN exhibits a reversible shrink‐swell volume change behavior in response to surrounding humidity, which enables sufficient mechanical strength for skin penetration under the shrinkage conditions and efficient long‐term adhesion when swollen in skin tissues. Moreover, the MN patch introduces a controllable long‐term drug release system, achieved through the integration of thiolated heparin (Hep‐SH) for sustained growth factor release and graphene oxide (GO) nanosheets for controlled drug release via near infrared (NIR) laser irradiation. The MN patches with growth factor loading have good biocompatibility and can promote the proliferation, migration, and proangiogenesis of endothelial cells is further demonstrated. Thus, it is believed that such flexible MN patches can be promising candidates for controllable long‐term transdermal drug delivery as well as other related tissue engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.