Abstract
Rapid prototyping (RP) techniques allow the construction of complex and sophisticated physical models based on personal needs, and the applications of the produced objects can be greatly extended by functionalizing the raw materials (e.g., resins) with components showing electrical, optical and magnetic properties. Here, we demonstrate a simple method for the realization of a three-dimensional architecture through 3D printing of organic resin doped with inorganic upconversion (UC) nanoparticles by using stereolithography technique. In our process, the wet-chemistry derived NaYF4: RE (RE: rare earth) nanoparticles with red, green and blue UC emission were incorporated into a resin matrix. We printed out pre-designed 3D structures with high precision and examined the UC emission properties. In a proof-of-concept experiment, we demonstrate that the 3D printed objects have reliable optical anti-counterfeiting based on high concealment in daylight and multi-color UC emission excited by a near-infrared laser at 980 nm. We also show that the 3D part with UC emission can be used for ratiometric temperature sensing from 303.15 K to 463.15 K, making it possible to map the temperature distribution for studying the thermal diffusion process in complex objects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.