Abstract

Microalgae can be part of the solution to the global food crisis, as they have high nutritional values. Recently, 3D printing of microalgae-enriched snacks has been reported with the capability to customize nutritional profiles, shapes, and textures of the snacks. Because the process parameters of extrusion-based 3D printing affect the printability of cookie dough, it is important to know the levels of process parameters leading to continuous extrusion. This study investigated feasible regions of printing process parameters for continuous extrusion of microalgae (Arthrospira Platensis) enriched cookie dough. The process parameters studied were nozzle diameter, printing speed, and air pressure. The feasible regions were determined by visual inspections of printed strands. The results show that, for smaller nozzle diameters and higher printing speeds, higher air pressures are required to ensure continuous extrusion. The identified feasible regions from this study would be helpful when deciding the appropriate nozzle diameter, printing speed, and air pressure to print microalgae-enriched cookie dough and other materials with similar rheological properties in extrusion-based 3D printing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.