Abstract

AbstractPorous ceramics are demanded in a wide range of high‐temperature, biological and energy‐related applications, but may show conflicting properties or suffer from poor mechanical properties. Introducing pores at different length scales has been shown to be a promising design strategy to combine antagonistic performance parameters and reach high porosity without severely compromising strength. Herein, a cost‐effective and simple process to create strong, highly porous ceramics via direct ink writing of suspensions of hollow microspheres into cellular architectures with pores at three hierarchical levels is reported. X‐ray diffraction, rheological measurements, scanning electron microscopy, and mechanical tests are conducted to thoroughly study the processing steps and morphology of the printed hierarchical porous ceramics. The presence of pores at multiple length scales increases significantly the mechanical strength of the porous structure, providing a useful platform for the manufacturing of lightweight ceramics from inexpensive and widely available feedstock materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.