Abstract
AbstractThe ability to macroscopically shape highly porous oxide materials while concomitantly tailoring the porous network structure as desired by simple and environmentally friendly processes is of great importance in many fields. Here, a purely aqueous printing process toward deliberately shaped, hierarchically organized amorphous silica and the corresponding polycrystalline quartz analogues based on a direct ink writing process (DIW) is presented. The key to success is the careful development of the sol–gel ink, which is based on an acidic aqueous sol of a glycolated silane and structure‐directing agents. The resulting 3D (DIW) printed silica consists of a macroporous network of struts comprising hexagonally arranged mesopores on a 2D hexagonal lattice. Together with a printed porous superstructure on the millimeter scale, well‐defined pore sizes and shapes on at least three hierarchy levels can thus be fabricated. The introduction of devitrifying agents in the printed green part and subsequent heat treatment allows for the transformation of the silica structure into polycrystalline α‐quartz. While small pores (micro‐ and mesopores below 10 nm) are lost, the printed morphology and the macroporous network of struts is preserved during crystallization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.