Abstract

Surgical resection of diffuse low-grade gliomas (DLGGs) involving cortical eloquent areas and subcortical functional pathways represents a challenge in neurosurgery. Patient-specific, 3-dimensional (3D)-printed models of head and brain structures have emerged in recent years as an educational and clinical tool for patients, doctors, and surgical residents. Using multimodal high-definition magnetic resonance imaging data, which incorporates information from specific task-based functional neuroimaging and diffusion tensor imaging tractography and rapid prototyping technologies with specialized software and "in-house" 3D printing, we were able to generate 3D-printed head models that were used for preoperative patient education and consultation, surgical planning, and resident training in 2 complicated DLGG surgeries. This 3D-printed model is rapid prototyped and shows a means to model individualized, diffuse, low-level glioma in 3D space with respect to cortical eloquent areas and subcortical pathways. Survey results from 8 surgeons with different levels of expertise strongly support the use of this model for surgical planning, intraoperative surgical guidance, doctor-patient communication, and surgical training (>95% acceptance). Spatial proximity of DLGG to cortical eloquent areas and subcortical tracts can be readily assessed in patient-specific 3D printed models with high fidelity. 3D-printed multimodal models could be helpful in preoperative patient consultation, surgical planning, and resident training.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call