Abstract
The demand for hydrogen has extraordinarily grown during the last years, being one of the most attractive forms of fuels to produce green energy. Cubic zirconia ceramics are considered promising catalytic supports, and the additive manufacturing of porous 3D structures based on these ceramics could enhance their catalytic performance. Herein, lightweight highly porous (up to 88%) 3D patterned 8 mol% yttria-stabilized cubic zirconia (8YSZ) scaffolds are manufactured by robocasting from pseudoplastic aqueous-based inks to produce catalytic supports for the hydrogen (H2) production. These scaffolds are thermally treated at temperatures ranging between 1000 and 1400 °C and, hence, mechanically and electrically characterized. 3D 8YSZ structures sintered at 1200 °C, with an appropriate balance between high porosity (86%) and compressive strength (3.7 MPa), are impregnated with palladium (Pd) catalytic nanoparticles and employed in the catalytic dehydrogenation of renewable formic acid (FA) using a fixed-bed reactor. 3D Pd/8YSZ catalyst leads to the continuous production of CO-free H2 with a FA conversion of 32% at T = 55 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.