Abstract

Porous cordierite materials are 3D printed by robocasting from two kaolin containing raw materials mixtures. Water suspensions of both mixtures at variable solid concentrations (40–67 wt%) are characterized by rheological measurements, showing good printability for concentrations >60 wt% without the need of any printing additive. The mixtures react during sintering (at 1250 °C) giving indialite as the main phase in the structures, which differ in minor phases. Three types of lattices are printed for both compositions with a logpile inner structure. Properties of interest like the coefficient of thermal expansion (CTE), the thermal conductivity (KT) and the compression strength (σ) of the printed cordierites are determined and compared with published data. Results evidence that printing of clay containing reactive mixtures is a straightforward and cost-effective way to achieve porous complex shaped cordierite with CTE∼ 2–3 x10−6 K-1, KT ∼ 0.4–0.6 W m−1 K−1 and maximum σ of 24 MPa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.