Abstract

The bone regenerative scaffold with the tailored degradation rate matching with the growth rate of the new bone is essential for adolescent bone repair. To satisfy these requirement, we proposed bone tissue scaffolds with controlled degradation rate using osteoinductive materials (Ca-P bioceramics), which is expected to present a controllable biodegradation rate for patients who need bone regeneration. Physicochemical properties, porosity, compressive strength and degradation properties of the scaffolds were studied. 3D printed Ca-P scaffold (3DS), gas foaming Ca-P scaffold (FS) and autogenous bone (AB) were used in vivo for personalized beagle skull defect repair. Histological results indicated that the 3DS was highly vascularized and well combined with surrounding tissues. FS showed obvious newly formed bone tissues. AB showed the best repair effect, but it was found that AB scaffolds were partially absorbed and degraded. This study indicated that the 3D printed Ca-P bioceramics with tailored biodegradation rate is a promising candidate for personalized skull bone tissue reconstruction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call