Abstract

Microneedle (MN) technology is an optimal choice for the delivery of drugs via the transdermal route, with a minimally invasive procedure. MN applications are varied from drug delivery, cosmetics, tissue engineering, vaccine delivery, and disease diagnostics. The MN is a biomedical device that offers many advantages including but not limited to a painless experience, being time-effective, and real-time sensing. This research implements additive manufacturing (AM) technology to fabricate MN arrays for advanced therapeutic applications. Stereolithography (SLA) was used to fabricate six MN designs with three aspect ratios. The MN array included conical-shaped 100 needles (10 × 10 needle) in each array. The microneedles were characterized using optical and scanning electron microscopy to evaluate the dimensional accuracy. Further, mechanical and insertion tests were performed to analyze the mechanical strength and skin penetration capabilities of the polymeric MN. MNs with higher aspect ratios had higher deformation characteristics suitable for penetration to deeper levels beyond the stratum corneum. MNs with both 0.3 mm and 0.4 mm base diameters displayed consistent force-displacement behavior during a skin-equivalent penetration test. This research establishes guidelines for fabricating polymeric MN for high-accuracy and low-cost 3D printing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.