Abstract

HypothesisWe have shown earlier that low molecular weight gels based on N-heptyl-d-galactonamide hydrogels can be 3D printed by solvent exchange, but they tend to dissolve in the printing bath. We wanted to explore the printing of less soluble N-alkyl-d-galactonamides with longer alkyl chains. Less soluble hydrogels could be good candidates as cell culture scaffolds. ExperimentsN-hexyl, N-octyl and N-nonyl-d-galactonamide solutions in dimethylsulfoxide are injected in a bath of water following patterns driven by a 2D drawing robot coupled to a z-platform. Solubilization of the gels with time has been determined and solubility of the gelators has been measured by NMR. Imbricated structures have been built with N-nonyl-d-galactonamide as a persistent ink and N-hexyl or N-heptyl-d-galactonamide as sacrificial inks. Human mesenchymal stem cells have been cultured on N-nonyl-d-galactonamide hydrogels prepared by cooling or by 3D printing. FindingsThe conditions for printing well-resolved 3D patterns have been determined for the three gelators. In imbricated structures, the solubilization of N-hexyl or N-heptyl-d-galactonamide occurred after a few hours or days and gave channels. Human mesenchymal stem cells grown on N-nonyl-d-galactonamide hydrogels prepared by heating–cooling, which are stable and have a fibrillar microstructure, developed properly. 3D printed hydrogels, which microstructure is made of micrometric flakes, appeared too fragile to withstand cell growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.