Abstract

In the present study, ZIF-8 metal-organic framework (MOF) modified with Tannic acid (TA@ZIF-8) was synthesized and impregnated in alginate-gelatin (Alg-Gel) hydrogel. The Alg-Gel scaffolds containing 0, 5, and 10 % of TA@ZIF-8 were fabricated through the 3D printing method specifically denoted as Alg-Gel 0 %, Alg-Gel 5 %, and Alg-Gel 10 %. XRD, FTIR, FESEM, and EDX physically and chemically characterized the synthesized ZIF-8 and TA@ZIF-8 MOFs. Besides, Alg-Gel containing TA@ZIF-8 prepared scaffolds and their biological activity were also evaluated. SEM images verified the nano-size formation of MOFs. Improved swelling and decreased degradation rates after adding TA@ZIF-8 were also reported. Increased compression strength from 0.628 to 1.63 MPa in Alg-Gel 0 % and Alg-Gel 10 %, respectively, and a 2.19 increase in elastic modulus in Alg-Gel 10 % scaffolds were exhibited. Biological activity of scaffolds, including Live-dead and Cell adhesion, antibacterial, in-vivo, and immunohistochemistry assays, demonstrated desirable fibroblast cell proliferation and adhesion, increased bacterial growth inhibition zone, accelerated wound closure and improved expression of anti-inflammatory cytokines in Alg-Gel 10 % scaffolds. The findings of this study confirm that Alg-Gel 10 % scaffolds promote full-thickness wound healing and could be considered a potential candidate for full-thickness wound treatment purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.