Abstract

A fragile and non-thixotropic biocompatible low molecular weight gel is printed in 3D structures by a solvent exchange process. The 3D printing process is based on the continuous extrusion of a solution of a small amphiphile molecule, N-heptyl-d-galactonamide, in dimethylsulfoxide, that forms a gel in contact with water. The diffusion of water in the dimethylsulfoxide / N-heptyl-d-galactonamide solution triggers the self-assembly of the molecule into supramolecular fibers and the setting of the ink. The conditions for getting a well-defined pattern and the dimensions of the constructs have been determined. The resulting constructs can be easily dissolved, orienting its application as a sacrificial ink or a temporary support. This method opens the way to the injection and the 3D printing of other fragile and non-thixotropic supramolecular hydrogels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.