Abstract
This work reports a successful 3D printing-based in situ temperature-induced gelification procedure of κ-carrageenan aqueous dispersions. 3D printer was modified to handle low viscosity fluid feeding and more efficiently distribute ambient air at room temperature causing forced convection to accelerate the cooling of the printed layer. Thus, obtained gel samples, containing 30 mg/g κ-carrageenan in water, showed self-sustaining capability and a rheological response comparable with a reference conventionally prepared gel. Moreover, the effect of main printing variables, such as temperature of the hotend, printing speed and layer height, on the linear viscoelastic response of the gels was analysed by application of the response surface methodology (RSM). In general, gel strength linearly increases by decreasing printing speed and layer height whereas not noticeable improvement in gel strength was achieved by applying hotend temperatures above 80–85 °C. Based on the results obtained from this analysis, an optimisation method is proposed to minimise the temperature and time needed to 3D print a gel with pre-set rheological properties. Overall, this study demonstrates that it is possible to generate in situ 3D printed gel materials with potential uses in food and pharmaco-nutrition, without the aid of reactive additives or initiators, and using a facile protocol.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.