Abstract

Background3D printing is an ideal manufacturing process for creating patient-matched models (anatomical models) for surgical and interventional planning. Cardiac anatomical models have been described in numerous case studies and journal publications. However, few studies attempt to describe wider impact of the novel planning augmentation tool. The work here presents the evolution of an institution’s first 3 full years of 3D prints following consistent integration of the technology into clinical workflow (2012–2014) - a center which produced 79 models for surgical planning (within that time frame). Patient outcomes and technology acceptance following implementation of 3D printing were reviewed.MethodsA retrospective analysis was designed to investigate the anatomical model’s impact on time-based surgical metrics. A contemporaneous cohort of standard-of-care pre-procedural planning (no anatomical models) was identified for comparative analysis. A post-surgery technology acceptance assessment was also employed in a smaller subset to measure perceived efficacy of the anatomical models. The data was examined.ResultsWithin the timeframe of the study, 928 primary-case cardiothoracic surgeries (encompassing both CHD and non-CHD surgeries) took place at the practicing pediatric hospital. One hundred sixty four anatomical models had been generated for various purposes. An inclusion criterion based on lesion type limited those with anatomic models to 33; there were 113 cases matching the same criterion that received no anatomical model. Time-based metrics such as case length-of-time showed a mean reduction in overall time for anatomical models. These reductions were not statistically significant. The technology acceptance survey did demonstrate strong perceived efficacy. Anecdotal vignettes further support the technology acceptance.Discussion & conclusionThe anatomical models demonstrate trends for reduced operating room and case length of time when compared with similar surgeries in the same time-period; in turn, these reductions could have significant impact on patient outcomes and operating room economics. While analysis did not yield robust statistical powering, strong Cohen’s d values suggest poor powering may be more related to sample size than non-ideal outcomes. The utility of planning with an anatomical model is further supported by the technology acceptance study which demonstrated that surgeons perceive the anatomical models to be an effective tool in surgical planning for a complex CHD repair. A prospective multi-center trial is currently in progress to further validate or reject these findings.

Highlights

  • 3D printing is an ideal manufacturing process for creating patient-matched models for surgical and interventional planning

  • Medical image post-processing and volumetric rendering techniques provide a wealth of information pre- and peri-procedural planning; the images remain separated from the physical domain in which the surgeons actively work

  • The results and conclusion of this study assisted in the formation of a prospective multi-center study investigating the efficacy of 3D printing in complex congenital heart disease

Read more

Summary

Introduction

The work here presents the evolution of an institution’s first 3 full years of 3D prints following consistent integration of the technology into clinical workflow (2012–2014) - a center which produced 79 models for surgical planning (within that time frame). The work here presents the evolution of an institution’s first 3 full years of 3D prints following consistent integration of the technology into clinical workflow (2012–2014) – a center which has produced over 500 to date. The data was statistically examined; statistical powering was not a central focus The aim of this pilot study was to 1) review the impact of 3D printing within a single healthcare institution, 2) understand what metrics may serve as ideal primary endpoints for subsequent studies, and 3) inform the creation of clinical trial with 3D printing as the experimental arm. The results and conclusion of this study assisted in the formation of a prospective multi-center study investigating the efficacy of 3D printing in complex congenital heart disease

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call