Abstract
The development of new thermoelectric conversion and cooling materials is an important means of addressing global climate and heat emissions in the future. While heavy and toxic elements like tellurium and lead are traditionally used to make thermoelectric materials with poor mechanical properties, recent decades have seen a gradual push towards greener and more sustainable alternatives. One such potential alternative material for thermoelectric and thermal management applications would be the Nitinol (TiNi) shape memory alloy, due to their superior mechanical properties. In this study, we have investigated the use of 3D melt printing techniques that can be used to achieve thermoelectric performance and efficiency of elastic memory alloys below 500 °C. The electrical and thermal properties of TiNiCu materials and their relation to morphology were investigated. All the alloys show similar effect sizes, their fatigue behavior is however different. By adjusting the composition of Ti and Ni elements and we have obtained memory alloys with high thermoelectric properties, with a 50% increase in power factor and a 100% increase in ZT values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.