Abstract

The present paper investigates the mechanical behavior of a biomimetic Voronoi structure, inspired by the microstructure of the shell of the sea urchin Paracentrotus lividus, with its characteristic topological attributes constituting the technical evaluation stage of a novel biomimetic design strategy. A parametric design algorithm was used as a basis to generate design permutations with gradually increasing rod thickness, node count, and model smoothness, geometric parameters that define a Voronoi structure and increase its relative density as they are enhanced. Physical PLA specimens were manufactured with a fused filament fabrication (FFF) printer and subjected to quasi-static loading. Finite element analysis (FEA) was conducted in order to verify the experimental results. A minor discrepancy between the relative density of the designed and printed models was calculated. The tests revealed that the compressive behavior of the structure consists of an elastic region followed by a smooth plateau region and, finally, by the densification zone. The yield strength, compressive modulus, and plateau stress of the structure are improved as the specific geometric parameters are enhanced. The same trend is observed in the energy absorption capabilities of the structure while a reverse one characterizes the densification strain of the specimens. A second-degree polynomial relation is also identified between the modulus, plateau stress, and energy capacity when plotted against the relative density of the specimens. Distinct Voronoi morphologies can be acquired with similar mechanical characteristics, depending on the design requirements and application. Potential applications include lightweight structural materials and protective gear and accessories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call