Abstract

The loosening and displacement of prostheses after dental implantation and arthroplasty is a substantial medical burden due to the complex correction surgery. Three-dimensional (3D)-printed porous titanium (pTi) alloy scaffolds are characterized by low stiffness, are beneficial to bone ingrowth, and may be used in orthopedic applications. However, for the bio-inert nature between host bone and implants, titanium alloy remains poorly compatible with osseointegration, especially in disease conditions, such as osteoporosis. In the present study, 3D-printed pTi scaffolds with ideal pore size and porosity matching the bone tissue, were combined with pulse electromagnetic fields (PEMF), an exogenous osteogenic induction stimulation, to evaluate osseointegration in osteoporosis. In vitro, external PEMF significantly improved osteoporosis-derived bone marrow mesenchymal stem cell proliferation and osteogenic differentiation on the surface of pTi scaffolds by enhancing the expression of alkaline phosphatase, runt-related transcription factor-2, osteocalcin, and bone morphogenetic protein-2. In vivo, Microcomputed tomography analysis and histological evaluation indicated the external PEMF markedly enhanced bone regeneration and osseointegration. This novel therapeutic strategy has potential to promote osseointegration of dental implants or artificial prostheses for patients with osteoporosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call