Abstract

Ti3C2Tx MXene is a promising material for electrodes in microsupercapacitors. Recent efforts have been made to fabricate MXene electrodes with designed structures using 3D printing to promote electrolyte permeation and ion diffusion. However, challenges remain in structural design diversity due to the strict ink rheology requirement and limited structure choices caused by existing extrusion-based 3D printing. Herein, additive-free 3D architected MXene aerogels are fabricated via a 3D printed template-assisted method that combines 3D printed hollow template and cation-induced gelation process. This method allows the use of MXene ink with a wide range of concentrations (5 to 150 mg mL-1) to produce MXene aerogels with high structural freedom, fine feature size (>50 μm), and controllable density (3 to 140 mg cm-3). Through structure optimization, the 3D MXene aerogel shows high areal capacitance of 7.5 F cm-2 at 0.5 mA cm-2 with a high mass loading of 54.1 mg cm-2. It also exhibits an ultrahigh areal energy density of 0.38 mWh cm-2 at a power density of 0.66 mW cm-2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.