Abstract

AbstractAdvanced nanomaterials and novel microstructures have been developed to achieve flexible piezoresistive pressure sensors with high sensitivity and wide linearity range. However, the theoretical relationships between the sensitivity and the structure of the flexible pressure sensor have rarely been established. Consequently, the sensitivities of the sensors cannot be controlled and tailored for practical application. In this work, a skin‐inspired flexible pressure sensor with gradient porous structure is proposed. Based on the stress distribution of finite element analysis (FEA), the quantitative descriptions between the sensitivity and sensor structure parameters are derived. Then, carbon black (CB)/polydimethylsiloxane (PDMS) composites are successfully fabricated with desired gradient porous structures by 3D printing technology. Encouragingly, the skin‐inspired gradient structure sensor shows good sensitivity (0.0048 kPa−1) over the ultrawide linear range of 0–500 kPa. Meanwhile, the sensor shows excellent stability and durability during over 500 compression cycles. Taking advantage of these excellent sensing properties, the skin‐inspired gradient porous sensor is demonstrated in the application of voice recognition, grasp sensing, and intermittent pneumatic compression (IPC) interface pressure monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.