Abstract

The triply periodic minimal surface (TPMS) is a highly useful structure for bone tissue engineering owing to its nearly nonexistent average surface curvature, high surface area-to-volume ratio, and exceptional mechanical energy absorption properties. However, limited literature is available regarding bionic zirconia implants using the TPMS structure for bone regeneration. Herein, we employed the digital light processing (DLP) technology to fabricate four types of zirconia-based TPMS structures: P-cell, S14, IWP, and Gyroid. For cell proliferation, the four porous TPMS structures outperformed the solid zirconia group (P-cell > S14 > Gyroid > IWP > ZrO2). In vitro assessments on the biological responses and osteogenic properties of the distinct porous surfaces identified the IWP and Gyroid structures as promising candidates for future clinical applications of porous zirconia implants because of their superior osteogenic capabilities (IWP > Gyroid > S14 > P-cell > ZrO2) and mechanical properties (ZrO2 > IWP > Gyroid > S14 > P-cell). Furthermore, the physical properties of the IWP/Gyroid surface had more substantial effects on bone immune regulation by reducing macrophage M1 phenotype polarization while increasing M2 phenotype polarization compared with the solid zirconia surface. Additionally, the IWP and Gyroid groups exhibited enhanced immune osteogenesis and angiogenesis abilities. Collectively, these findings highlight the substantial impact of topology on bone/angiogenesis and immune regulation in promoting bone integration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call