Abstract

Additive manufacturing enables the fabrication of bio-inspired materials possessing intricate architectures across broad length scales leading to systems that are simultaneously stiff, tough, and lightweight. A digital light processing (DLP) strategy was used to additively manufacture polymer foams with controlled porosity through the incorporation of thermally expandable microspheres. Following initial photopolymerization, a subsequent thermal processing step reproducibly allows access to a broad range of foam densities. Using uniaxial compression, we investigated how foaming impacts the mechanics of the composite material, including modulus, Poisson’s ratio, and energy dissipation. It was observed that the 3D-printed foams are remarkably resilient under cyclic loading, with sustained values of both modulus and energy dissipation under repeated loading at large deformations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.