Abstract

3D printing is lately utilized in biological sciences under the scope to develop customized scaffolds that will host biomolecules, either whole cells or parts of them, like enzymes. In the present work, we present a protocol to modify the surface of 3D printed polylactic acid (PLA) well-plates with the aim to co-immobilize multiple enzymes that will perform cascade reactions. Detailed steps to design and print the final models are described. The developed protocol for surface modification is based on coating with chitosan biopolymer and covalent immobilization of the enzymes β-glucosidase, glucose oxidase, and peroxidase via glutaraldehyde cross-linking. Enzymatic activity measurements indicative of the catalytic performance of the system are also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.