Chemical Engineering Journal | VOL. 362
Read

3D printed PCL/SrHA scaffold for enhanced bone regeneration

Publication Date Apr 1, 2019

Abstract

Abstract Strontium-containing hydroxyapatite (SrHA) is a promising material for bone repair and bone replacement due to the similar inorganic components with natural bone. In this study, the poly(ɛ-caprolactone) (PCL)/SrHA composite scaffold was fabricated by 3D printing method. Scanning electron microscopy (SEM) images of the fabricated scaffolds showed that SrHA was uniformly embedded in the interior of scaffold struts, and in vitro release profiles revealed that Sr and Ca ions released from the PCL/SrHA scaffold in a sustained manner. To confirm the performance of the fabricated composite scaffolds for bone regeneration, the cell proliferation and osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (BMSCs) grown on the scaffolds were evaluated. The experimental results indicated that incorporation of SrHA in the 3D printed PCL scaffold significantly facilitated the cell proliferation, and the PCL/SrHA scaffolds induced higher levels of BMSCs differentiation compared to the PCL and PCL/HA scaffolds, as demonstrated by ALP activity and osteo-related gene expression. Furthermore, in vivo cranial defect experiments further revealed that the incorporation of SrHA into 3D printed PCL scaffold was capable of promoting bone regeneration. Taken together, these results indicate that the PCL/SrHA composite scaffold can be readily fabricated by 3D printing technology and is highly promising as implantable material for bone tissue engineering application.

Concepts

Strontium-containing Hydroxyapatite Promising Material For Bone Repair Composite Scaffolds For Bone Regeneration 3D Printed PCL Scaffold Rat Bone Marrow-derived Mesenchymal Stem Bone Marrow-derived Mesenchymal Stem Cells 3D Printed Composite Scaffold Bone Regeneration 3D Printing Method

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Nov 21, 2022 to Nov 27, 2022

R DiscoveryNov 28, 2022
R DiscoveryArticles Included:  2

No potential conflict of interest was reported by the authors. The conception and design of the study, acquisition of data, analysis and interpretatio...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.