Abstract
Objective: A simulator for retrobulbar anesthesia administration mimicking the orbital anatomy and providing tactile sensation is proposed. Methods: The production process involves 3D modeling of anatomical structures on the basis of computerized tomography (CT) images, printing the models using a 3D printer, and casting the silicone. Twenty ophthalmologists administered retrobulbar anesthesia using the simulator with four different ocular axial lengths (including extreme myopes); the position of the needle tip was evaluated. The effectiveness of this simulator for training was also surveyed. Results: The proportions of the final location of the needle tip were 59.25%, 36.25%, and 4.5% for the retrobulbar space, peribulbar space, and intraocular space, respectively. Experienced ophthalmologists showed lower complication rates than residents (0.5% vs 8.5%, n}{}P < 0.001n) and agreed that this simulator will help young ophthalmologists advance their anesthesia-administering skills. Discussion/Conclusion: The 3D-printered simulator for retrobulbar anesthesia was produced and performance was verified. The technology could be used to simulate critical orbital anatomic features and could be used as a training tool for resident ophthalmologists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE journal of translational engineering in health and medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.