Abstract

While autografts to date remain the "gold standard" for bone void fillers, synthetic bone grafts have garnered attention due to their favorable advantages such as ability to be tailored in terms of their physical and chemical properties. Bioactive glass (BG), an inorganic material, has the capacity to form a strong bond with bone by forming a bone-like apatite surface, enhancing osteogenesis. Coupled with additive manufacturing (3D printing) it is possible to maximize bone regenerative properties of the BG. The objective of this study was to synthesize and characterize 3D printed mesoporous bioactive glass (MBG), BG 45S5, and compare to β-Tricalcium phosphate (β-TCP) based scaffolds; test cell viability and osteogenic differentiation on human osteoprogenitor cells invitro. MBG, BG 45S5, and β-TCP were fabricated into colloidal gel suspensions, tested with a rheometer, and manufactured into scaffolds using a 3D direct-write micro-printer. The materials were characterized in terms of microstructure and composition with Thermogravimetric Analyzer/Differential Scanning Calorimeter (TGA/DSC), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Micro-Computed Tomography (μ-CT), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Mattauch-Herzog-Inductively Coupled Plasma-Mass Spectrometry (MH-ICP-MS). Scaffolds were tested for cell proliferation and osteogenic differentiation using human osteoprogenitor cells. Osteogenic media was used for differentiation, and immunocytochemistry for osteogenic markers Runx-2, Collagen-I, and Osteocalcin. The cell viability results after 7 days of culture yielded significantly higher (p < 0.05) results in β-TCP scaffolds compared to BG 45S5 and MBG groups. All materials expressed osteogenic markers after 21 days of culture in expansion and osteogenic media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call