Abstract

Manipulating photons in artificially structured materials is highly desired in modern photonic technology. Nontrivial topological structures are rapidly emerging as a state-of-art platform for achieving unprecedented fascinating phenomena of photon manipulation. However, the current studies mainly focus on planar structures, and the fabrication of photonic microstructures with specific topological geometric features still remains a great challenge. Extending the topological photonics to 3Dmicroarchitectures is expected to enrich the photon manipulation capabilities and further advance the topological photonic devices. Here, a femtosecond laser direct writing technique is employed to fabricate 3D topological Möbius microring resonators from dye-doped polymer. The high-quality-factor Möbius microring resonator supports a unique spin-orbit coupled lasing at very low threshold. Due to the spin-orbit coupling induced geometric/Berry phase, the Möbius microrings, in striking contrast with ordinary microrings, output laser signals with all polarization states. The manipulation of miniaturized coherent light sources in the fabricated Möbius microrings represents a significant step forward toward 3D topological photonics that offers a novel design philosophy for functional photonic and optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.