Abstract

The aim of this study is to provide a detailed strategy for Safe-by-Design (SbD) 3D-printed lab-on-a-chip (LOC) device manufacturing, using Fused Filament Fabrication (FFF) technology. First, the applicability of FFF in lab-on-a-chip device development is briefly discussed. Subsequently, a methodology to categorize, identify and implement SbD measures for FFF is suggested. Furthermore, the most crucial health risks involved in FFF processes are examined, placing the focus on the examination of ultrafine particle (UFP) and Volatile Organic Compound (VOC) emission hazards. Thus, a SbD scheme for lab-on-a-chip manufacturing is provided, while also taking into account process optimization for obtaining satisfactory printed LOC quality. This work can serve as a guideline for the effective application of FFF technology for lab-on-a-chip manufacturing through the safest applicable way, towards a continuous effort to support sustainable development of lab-on-a-chip devices through cost-effective means.

Highlights

  • IntroductionAdditive manufacturing (AM) is defined as the process of joining materials to make parts based on computer-generated 3D model data, usually layer upon layer, as opposed to subtractive manufacturing and formative manufacturing methodologies [1]

  • The aim of this study is to provide a detailed strategy for Safe-by-Design (SbD) 3D-printed lab-on-a-chip (LOC) device manufacturing, using Fused Filament Fabrication (FFF) technology

  • The most crucial health risks involved in FFF processes are examined, placing the focus on the examination of ultrafine particle (UFP) and Volatile Organic Compound (VOC) emission hazards

Read more

Summary

Introduction

Additive manufacturing (AM) is defined as the process of joining materials to make parts based on computer-generated 3D model data, usually layer upon layer, as opposed to subtractive manufacturing and formative manufacturing methodologies [1]. One of the most widely available and utilized AM techniques is known as Fused Filament Fabrication (FFF). In FFF, a solid thermoplastic filament is guided and led through a heated extrusion nozzle. Deposition requires that the process takes place at a temperature close to the filament material’s melting point. The required geometry is formed layer-by-layer through programmed extrusion of the semi-liquid material and movement of the nozzle and/or the print bed platform, which is usually heated [2]. The most commonly used Filament materials for FFF processes are Polylactide (PLA) and Acrylonitrile butadiene styrene (ABS). Several other filament materials can be used (nylon, PETG, PC, HIPS) while filaments that include metals, nanomaterials, wood, and carbon fibres have been manufactured, in order to generate special functional or aesthetic properties [3]

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.