Abstract

Batteries constructed via 3D printing techniques have inherent advantages including opportunities for miniaturization, autonomous shaping, and controllable structural prototyping. However, 3D-printed lithium metal batteries (LMBs) have not yet been reported due to the difficulties of printing lithium (Li) metal. Here, for the first time, high-performance LMBs are fabricated through a 3D printing technique using cellulose nanofiber (CNF), which is one of the most earth-abundant biopolymers. The unique shear thinning properties of CNF gel enables the printing of a LiFePO4 electrode and stable scaffold for Li. The printability of the CNF gel is also investigated theoretically. Moreover, the porous structure of the CNF scaffold also helps to improve ion accessibility and decreases the local current density of Li anode. Thus, dendrite formation due to uneven Li plating/stripping is suppressed. A multiscale computational approach integrating first-principle density function theory and a phase-field model is performed and reveals that the porous structures have more uniform Li deposition. Consequently, a full cell built with a 3D-printed Li anode and a LiFePO4 cathode exhibits a high capacity of 80 mA h g-1 at a charge/discharge rate of 10 C with capacity retention of 85% even after 3000 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.