Abstract
The structural design of three-dimensional (3D) flexible wearable sensors using conductive polymer composites is a hot spot in current research. In this paper, honeycomb-shaped flexible resistive pressure sensors with three different support structures were manufactured by using thermoplastic polyurethane and graphene nanoplatelets composites based on fused deposition 3D printing technology. Based on the various 3D conductive network of the sensors, the flexible sensor exhibit excellent piezoresistive performance, such as adjustable gauge factor (GF) (13.70–54.58), exceptional durability and stability. A combination of representative volume element and finite element simulations was used to simulate the stress distribution of sensors with different structures to predict the structure’s effect on the sensor GF. In addition, the sensor can be attached to human body to monitor the body’s swallowing and walking behaviors. The sensor has prospective process applications for intelligent wearable devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.