Abstract

Three-dimensional (3D) printing, alternatively known as additive manufacturing, is a transformative technology enabling precise, customized, and efficient manufacturing of components with complex structures. It revolutionizes traditional processes, allowing rapid prototyping, cost-effective production, and intricate designs. The 3D printed graphene-based materials combine graphene's exceptional properties with additive manufacturing's versatility, offering precise control over intricate structures with enhanced functionalities. To gain comprehensive insights into the development of 3D printed graphene and graphene/polymer composites, this review delves into their intricate fabrication methods, unique structural attributes, and multifaceted applications across various domains. Recent advances in printable materials, apparatus characteristics, and printed structures of typical 3D printing techniques for graphene and graphene/polymer composites are addressed, including extrusion methods (direct ink writing and fused deposition modeling), photopolymerization strategies (stereolithography and digital light processing) and powder-based techniques. Multifunctional applications in energy storage, physical sensor, stretchable conductor, electromagnetic interference shielding and wave absorption, as well as bio-applications are highlighted. Despite significant advancements in 3D printed graphene and its polymer composites, innovative studies are still necessary to fully unlock their inherent capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.