Abstract

Geopolymers have high application potential due to their outstanding ion exchange ability. A novel direct ink writing (DIW) geopolymer adsorption sieve (GAS) preparation strategy was proposed. The preparation and optimization of DIW inks and the adsorption properties and mechanism of GAS for methylene blue (MB) were systematically investigated by characterization and density functional theory (DFT) calculation. The GASs exhibited desired adsorption rates for MB in both dynamic (83.6% at 200 min) and static (97.1% in 7 days) states. The adsorption kinetic was fitted well by the pseudo-first-order model at the early stage and eventually was transformed to fit well by the pseudo-second-order model and indicated the boundary liquid layer diffusion and intraparticle diffusion were all rate-limiting factors. The exploration of adsorption mechanism confirmed that the adsorption of GAS for MB was affected by the coordination of electrostatic action, hydrogen bonds and electrons transfer. The proposed strategy provides a promising reference for design and preparation of eco-friendly 3D printing adsorbent systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.