Abstract

Abstract In the last decade, many researchers have focused on developing fuel-cell flow-field designs that homogeneously distribute reactants with an optimum pressure drop. Most of the previous studies are numerical simulations and the few experimental studies conducted have used very simple flow-field geometries due to the limitations of the conventional fabrication techniques. 3D printing is an excellent rapid prototyping method for prototyping bipolar plates (BPPs) to perform experiments on new flow-field designs. The present research investigates the applicability of different 3D-printed BPPs for studying fluid-dynamic behaviour. State-of-the-art flow-field designs are fabricated using PolyJet 3D printing, stereolithographic apparatus (SLA) 3D printing and laser-cutter technologies, and the pressure-drop and velocity profiles are measured for each plate. The results demonstrate that SLA BPPs have great promise in serving as a screening tool in modifying flow-field design with a small feature size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call