Abstract

Prosthetics are an extension of the human body and must provide functionality similar to that of a non-disabled individual to be effective. Sports prosthetics such as the Flex-Foot Cheetah from Össur have demonstrated the value of creating devices that both provide mechanical support and introduce passive energy return to mimic forces otherwise produced at joints. These energy return mechanisms have not yet been demonstrated for upper limb prosthetics but could improve their effectiveness and provide a greater range of motion and control. Using multi-material 3D printing technology, we extend energy return components to upper limb prosthetics by developing novel force-sensing springs and applying them to a basketball prosthetic. The 3D-printed springs compensate for the forces otherwise generated by wrist and finger flexion while measuring the mechanical deflection. We discuss design guidelines, methods for integrated 3D printed energy return within prosthetics, and broader applications in assistive technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call